Highest vectors of representations (total 6) ; the vectors are over the primal subalgebra. | \(-h_{6}-2h_{5}-3h_{4}-4h_{3}+2h_{2}+h_{1}\) | \(g_{13}+g_{12}\) | \(g_{7}\) | \(g_{9}\) | \(g_{6}+g_{4}+g_{1}\) | \(g_{16}\) |
weight | \(0\) | \(\omega_{1}+\omega_{2}\) | \(\omega_{1}+\omega_{3}\) | \(\omega_{2}+\omega_{3}\) | \(2\omega_{3}\) | \(\omega_{1}+\omega_{2}+2\omega_{3}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(\omega_{1}+\omega_{2}\) | \(\omega_{1}+\omega_{3}+14\psi\) | \(\omega_{2}+\omega_{3}-14\psi\) | \(2\omega_{3}\) | \(\omega_{1}+\omega_{2}+2\omega_{3}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0, 0, 0) | \(\displaystyle V_{\omega_{1}+\omega_{2}} \) → (1, 1, 0, 0) | \(\displaystyle V_{\omega_{1}+\omega_{3}+14\psi} \) → (1, 0, 1, 14) | \(\displaystyle V_{\omega_{2}+\omega_{3}-14\psi} \) → (0, 1, 1, -14) | \(\displaystyle V_{2\omega_{3}} \) → (0, 0, 2, 0) | \(\displaystyle V_{\omega_{1}+\omega_{2}+2\omega_{3}} \) → (1, 1, 2, 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
| Semisimple subalgebra component.
|
|
| Semisimple subalgebra component.
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(\omega_{1}+\omega_{3}\) \(-\omega_{1}+\omega_{2}+\omega_{3}\) \(\omega_{1}-\omega_{3}\) \(-\omega_{2}+\omega_{3}\) \(-\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{2}-\omega_{3}\) | \(\omega_{2}+\omega_{3}\) \(\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{2}-\omega_{3}\) \(-\omega_{1}+\omega_{3}\) \(\omega_{1}-\omega_{2}-\omega_{3}\) \(-\omega_{1}-\omega_{3}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(\omega_{1}+\omega_{2}+2\omega_{3}\) \(-\omega_{1}+2\omega_{2}+2\omega_{3}\) \(2\omega_{1}-\omega_{2}+2\omega_{3}\) \(\omega_{1}+\omega_{2}\) \(2\omega_{3}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{3}\) \(2\omega_{1}-\omega_{2}\) \(\omega_{1}+\omega_{2}-2\omega_{3}\) \(-2\omega_{1}+\omega_{2}+2\omega_{3}\) \(\omega_{1}-2\omega_{2}+2\omega_{3}\) \(0\) \(-\omega_{1}+2\omega_{2}-2\omega_{3}\) \(0\) \(2\omega_{1}-\omega_{2}-2\omega_{3}\) \(-\omega_{1}-\omega_{2}+2\omega_{3}\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-2\omega_{3}\) \(-2\omega_{3}\) \(-\omega_{1}-\omega_{2}\) \(-2\omega_{1}+\omega_{2}-2\omega_{3}\) \(\omega_{1}-2\omega_{2}-2\omega_{3}\) \(-\omega_{1}-\omega_{2}-2\omega_{3}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(\omega_{1}+\omega_{3}+14\psi\) \(-\omega_{1}+\omega_{2}+\omega_{3}+14\psi\) \(\omega_{1}-\omega_{3}+14\psi\) \(-\omega_{2}+\omega_{3}+14\psi\) \(-\omega_{1}+\omega_{2}-\omega_{3}+14\psi\) \(-\omega_{2}-\omega_{3}+14\psi\) | \(\omega_{2}+\omega_{3}-14\psi\) \(\omega_{1}-\omega_{2}+\omega_{3}-14\psi\) \(\omega_{2}-\omega_{3}-14\psi\) \(-\omega_{1}+\omega_{3}-14\psi\) \(\omega_{1}-\omega_{2}-\omega_{3}-14\psi\) \(-\omega_{1}-\omega_{3}-14\psi\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(\omega_{1}+\omega_{2}+2\omega_{3}\) \(-\omega_{1}+2\omega_{2}+2\omega_{3}\) \(2\omega_{1}-\omega_{2}+2\omega_{3}\) \(\omega_{1}+\omega_{2}\) \(2\omega_{3}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{3}\) \(2\omega_{1}-\omega_{2}\) \(\omega_{1}+\omega_{2}-2\omega_{3}\) \(-2\omega_{1}+\omega_{2}+2\omega_{3}\) \(\omega_{1}-2\omega_{2}+2\omega_{3}\) \(0\) \(-\omega_{1}+2\omega_{2}-2\omega_{3}\) \(0\) \(2\omega_{1}-\omega_{2}-2\omega_{3}\) \(-\omega_{1}-\omega_{2}+2\omega_{3}\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-2\omega_{3}\) \(-2\omega_{3}\) \(-\omega_{1}-\omega_{2}\) \(-2\omega_{1}+\omega_{2}-2\omega_{3}\) \(\omega_{1}-2\omega_{2}-2\omega_{3}\) \(-\omega_{1}-\omega_{2}-2\omega_{3}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{\omega_{1}+\omega_{3}+14\psi}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}+14\psi}\oplus M_{-\omega_{2}+\omega_{3}+14\psi} \oplus M_{\omega_{1}-\omega_{3}+14\psi}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}+14\psi}\oplus M_{-\omega_{2}-\omega_{3}+14\psi}\) | \(\displaystyle M_{\omega_{2}+\omega_{3}-14\psi}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}-14\psi}\oplus M_{-\omega_{1}+\omega_{3}-14\psi} \oplus M_{\omega_{2}-\omega_{3}-14\psi}\oplus M_{\omega_{1}-\omega_{2}-\omega_{3}-14\psi}\oplus M_{-\omega_{1}-\omega_{3}-14\psi}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}+2\omega_{3}}\oplus M_{-\omega_{1}+2\omega_{2}+2\omega_{3}}\oplus M_{2\omega_{1}-\omega_{2}+2\omega_{3}} \oplus 2M_{2\omega_{3}}\oplus M_{\omega_{1}+\omega_{2}}\oplus M_{-2\omega_{1}+\omega_{2}+2\omega_{3}}\oplus M_{\omega_{1}-2\omega_{2}+2\omega_{3}} \oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}+2\omega_{3}}\oplus 2M_{0}\oplus M_{\omega_{1}+\omega_{2}-2\omega_{3}} \oplus M_{-2\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}-2\omega_{3}}\oplus M_{2\omega_{1}-\omega_{2}-2\omega_{3}} \oplus M_{-\omega_{1}-\omega_{2}}\oplus 2M_{-2\omega_{3}}\oplus M_{-2\omega_{1}+\omega_{2}-2\omega_{3}}\oplus M_{\omega_{1}-2\omega_{2}-2\omega_{3}} \oplus M_{-\omega_{1}-\omega_{2}-2\omega_{3}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{0}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{\omega_{1}+\omega_{3}+14\psi}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}+14\psi}\oplus M_{-\omega_{2}+\omega_{3}+14\psi} \oplus M_{\omega_{1}-\omega_{3}+14\psi}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}+14\psi}\oplus M_{-\omega_{2}-\omega_{3}+14\psi}\) | \(\displaystyle M_{\omega_{2}+\omega_{3}-14\psi}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}-14\psi}\oplus M_{-\omega_{1}+\omega_{3}-14\psi} \oplus M_{\omega_{2}-\omega_{3}-14\psi}\oplus M_{\omega_{1}-\omega_{2}-\omega_{3}-14\psi}\oplus M_{-\omega_{1}-\omega_{3}-14\psi}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}+2\omega_{3}}\oplus M_{-\omega_{1}+2\omega_{2}+2\omega_{3}}\oplus M_{2\omega_{1}-\omega_{2}+2\omega_{3}} \oplus 2M_{2\omega_{3}}\oplus M_{\omega_{1}+\omega_{2}}\oplus M_{-2\omega_{1}+\omega_{2}+2\omega_{3}}\oplus M_{\omega_{1}-2\omega_{2}+2\omega_{3}} \oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}+2\omega_{3}}\oplus 2M_{0}\oplus M_{\omega_{1}+\omega_{2}-2\omega_{3}} \oplus M_{-2\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}-2\omega_{3}}\oplus M_{2\omega_{1}-\omega_{2}-2\omega_{3}} \oplus M_{-\omega_{1}-\omega_{2}}\oplus 2M_{-2\omega_{3}}\oplus M_{-2\omega_{1}+\omega_{2}-2\omega_{3}}\oplus M_{\omega_{1}-2\omega_{2}-2\omega_{3}} \oplus M_{-\omega_{1}-\omega_{2}-2\omega_{3}}\) |
2 & | -1 & | 0\\ |
-1 & | 2 & | 0\\ |
0 & | 0 & | 2\\ |